The Intersection of IoT and CPS

Chris Greer

Senior Executive for

Cyber-Physical Systems

chris.greer@nist.gov

- Edward Griffor Framework, Mathematical models
- Marty Burns Framework, Pivotal Points of Interoperability
- David Wollman Framework, Physical and Logical Interactions

Outline

Definitions

- Illustrative Scenarios
- Mathematical Models
- Framework

CPS: Examples of Current Definitions

Cyber-physical systems (CPS) are engineered systems that are built from, and depend upon, the seamless integration of computational algorithms and physical components. **US National Science Foundation**

Cyber-physical systems integrate sensing, computation, control and networking into physical objects and infrastructure, connecting them to the Internet and to each other. **CPS** Virtual Organization

Cyber-physical systems (CPS) are smart systems that include engineered interacting networks of physical and computational components.

CPS Public Working Group (NIST)

In such technical systems, which are often called cyber-physical systems (CPS), realtime computing elements and physical systems interact tightly. ... The merging of IoT and CPS into closed-loop, real-time IoT-enabled cyber-physical systems is seen as an important future challenge.

PICASSO Project Opportunity Report

IoT: Examples of Current Definitions

An infrastructure of interconnected objects, people, systems and information resources together with intelligent services to allow them to process information of the physical and the virtual world and react.

ISO/IEC JTC1, 2015

The Internet of Things (IoT) has been defined in Recommendation ITU-T Y.2060 as a global infrastructure for the information society, enabling advanced services by interconnecting (physical and virtual) things based on existing and evolving interoperable information and communication technologies.

ITU-TY.400/Y.2060

IoT refers to any systems of interconnected people, physical objects, and IT platforms, as well as any technology to better build, operate, and manage the physical world via pervasive data collection, smart networking, predictive analytics, and deep optimization. IEEE-SA IoT Ecosystem Study 2015

Relationship Between CPS and IoT: Examples

In most academic and project activities, the difference between "Internet of Things" and "Cyber-Physical Systems (CPS)" is not made clear and it is difficult to find a source that draws a clear-cut distinction ... Yet, identified objects in an IoT system can still be networked together so as to control a certain scenario in a coordinated way, in which case an IoT system can be considered to grow to the level of a CPS.

IEEE (2015) Towards a Definition of the Internet of Things

According to the PICASSO definition, the IoT is seen as an enabling technology for CPS or CPSoS (System of Systems) ... The merging of IoT and CPS into closed-loop, real-time IoT-enabled cyber-physical systems is seen as an important future challenge. PICASSO Project Opportunity Report

Outline

Definitions

Illustrative Scenarios

Mathematical Models

• Framework

Outline

Definitions

Illustrative Scenarios

Mathematical Models

• Framework

Unified CPS Mathematical Model

engineering laboratory

- Logical State of a CPS is a vector of logical state parameters <L₁, ..., L_n>
- The Logical State is acted upon by algorithms TL₁, ..., TL_k (each can be viewed as an operator on <L₁, ..., L_n>, resulting in <L'₁, ..., L'_n>;
- Physical state of a CPS is a vector of physical state parameters <P₁, ..., P_m>;
- a physical state vector is a solution to an algebraic system of differential equations (each equation describing a *waveform* for a choice of free variables)
- The Physical State is acted upon by energy exchange processes, represented by algebraic systems of ODEs, T_{e1} , ..., T_{ek}

Representing CPS: Symmetric Monoidal Categories

- For purposes here systems will be viewed as processes and interactions between them (process algebra in the sense of Milnor for example)
- We distinguish two sorts of interactions between processes:
 Logical interactions (exchanges of information)
 Physical interactions (exchanges of energy)
- Math model of physical interactions is algebraic systems of ODEs
- Math model of logical interactions are formalizations of agent-based models such as complex adaptive systems (J. Holland)
- We choose symmetric monoidal categories (SMC) as an example of a **model of systems in category theory**

Relation between CPS and IoT

Cyber-**Physical Systems** (CPS) comprise interacting digital, analog, physical, and human components engineered for function through integrated physics and logic.

- Examples include a smart gird, a self-driving car, a smart manufacturing plant, an intelligent transportation system, a smart city, and Internet of Things (IoT) instances connecting new devices for new data streams and new applications.
- Common notions of IoT have emphasized networked sensors providing data streams to applications.
- CPS concepts complete these IoT notions, providing the means for conceptualizing, realizing and assuring all aspects of the composed systems of which sensors and data streams are components.

The Framework for Cyber-Physical Systems was released by the NIST CPSPWG on May 26, 2016

CPS Mathematical Models

- Connecting logical and physical forms of concerns using interactions between the logical and physical states of a CPS
- Math of these interactions can provide a unified cyber-physical science.
- Sensing and Actuation 'connect' properties of the logical and physical elements of the CPS design

Logical Concerns

Physical Concerns

Outline

Definitions

Illustrative Scenarios

Mathematical Models

• Framework

Analyzing and Developing CPS: Decomposition

Functional

Decomposition/Allocation

Safety "Properties" of a decomposed Function: AEB

AEB – vehicle provides automated collision safety function

AEB – vehicle provides/maintains safe stopping

AEB –braking function reacts as required

AEB – messaging function receives distance to obstacles and speed from propulsion function

AEB – distance and speed info is understood by braking function

AEB – stopping algorithm provided safe stopping

AEB – friction function provides appropriate friction

Generate System Properties

National Institute of Standards and Technology • U.S. Department of Commerce

CPS Framework

Domains			Facets		
			Conceptualization	Realization	Assurance
Manufacturing		Functional			
		Business			
Transportation	(0	Human			
Transportation	Cta	Trustworthiness			
		Timing			
Energy	S	Data			
		Boundaries			
Healthcare		Composition			
		Lifecycle			
Domain					

The Framework for Cyber-Physical Systems was released by the NIST CPSPWG on May 26, 2016, see pages.nist.gov/cpspwg

CPS Concern Tree

CPS Concern Tree

A privacy protected message exchange might consist of the set of properties: {Trustworthiness.Security.Cybersecurity.Confidentiality.Encryption.AES, Trustworthiness.Privacy.Predictability.Controls.Authorization.OAuth}

Concern-Driven Analysis of a Standard

	-	Common Concern: Trustworthiness.Security.Cybersecurity.confidentiality			Clause in document: TS-0002 clause 6.4 Solution TS-0		n: Access Control Authorization, 0003 clause 7
	Technology level (Device, System, System of Systems) Technology scope description (text)						
Concern		Aspect/Concern	Discussion of Concern	Discussion Reference(s)	Solution		Solution Reference(s)
Functional	Functional		in general	n/a			
Trustworthiness	Trustworthine	255					
privacy	privacy		authorization, privacy and all the security requirements are defined	TS-0002 clause 6.4	Use proper access control settings under control of the data subject (individual whose privacy is exposed by the data)		TS-8003 Clause 7
reliability	reliability		in terms of message delivery, yes	tbd	CMDH(connection management and delivery handling) CSF and its resource types		TS-0001 clause 6.2.2
resilience	resilience		in terms of message delivery, yes	tbd	CMDH(connection management and delivery handling) CSF a types	and its resource	TS-0001 clause 6.2.2
safety	safety		Every deployment requires a risk and vulnerability assessment	TR-0008	Perform proper risk and vulnerability assessment and mitigate unacceptable risks		Any Risk assessment methodology. See TR- 0008
security	security		all the security requirements are defined	TS-0002 clause 6.4, TR-0008	Definition of 4 protection levels suitable for different expos of security frameworks to protect assets	ures. Definitrion	TS-0003
cybersecurity	cyberse	ecurity	all the security requirements are defined	TS-0002 clause 6.4	CPS security implies cybersecurity with additional challenge exist to mitigate risks down to acceptable levels!	s. Sdolutions	TR-0008; TS-0003
confidentiality	conf	identiality	all the security requirements are defined	TS-0002 clause 6.4	Access Control and Authorization 🖌		TS-0003 clause 7
integrity	integ	grity	all the security requirements are defined	TS-0002 clause 6.4	implement proper protection level		TR-0008; TS-0003
availability	avai	lability	Risks related to Denial of Service	TR-0008	Some mitigatoion mechanisms exist		TR-0008, TS-0003

Concern

Solution

Reference

Foundation for Cooperation

Specs to Pivotal Points of Interoperability

Zone of Concerns = bundles of services that address a "vector" of concerns

Pivotal Points of Interoperability (PPI)

SynchroniCity Zones of Concern

ESPRESSO Zones of Concern

IoT Views

	loT View	loT View	loT View	loTView	loT View
Concern					

For additional information

Program Web Site:
 www.nist.gov/cps

• CPS Public Working Group pages.nist.gov/cpspwg

Smart City Framework
 pages.nist.gov/smartcitiesarchitecture

Contact:
 chris area

chris.greer@nist.gov

