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‘ Evolution of cellular networks
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Technology directions for 5G

[1. Device-centric designs (edge) ]

2. Millimeter wave (mmWave)
Subject of today’s talk

3. Massive MIMO

[4. Smart network, e.g., adaptive caching in small cells (fog) ]

5. Seamless machine-to-machine (M2M), and IoT communications

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta and P. Popovski, “Five disruptive technology
directions for 5G,” IEEE Communication Magazine, vol. 52, no. 2, pp. 74-80, February 2014. .
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Heterogeneous small-cell networks

U Traditional cells

= Medium to long-range (1-10 km)
» High-gain antenna
= Crucial for coverage and mobility support

O Pico-cells

» Short-range (~100m)
= Small, easy deployment
» Targeting “hotspots” or dense areas

O Femto-cells

=  WiFirange (~10m)
= |nter-cell coordination minimum overhead
» Licensed spectrum

Expensive (over $100K+OpEX)
40W Tx power
Fast dedicated backhaul

Low-cost ($5-40K + small OpEX)
1-2W Tx power W
Cheap backhaul

100$+small OpEX
100-200mW Tx power
Backhaul (IP, e.g. DSL, coax)

[ Heterogeneous networks (HetNets) entail all three types ]

J. G. Andrews, H. Claussen, M. Dohler, S. Rangan and M. C. Reed, “Femtocells: Past, Present, and5
Future,” IEEE Jour. on Selected Areas in Communications, vol. 30, no. 3, pp. 497-508, April 2012.



Pros and cons of HetNets

+ Spatial reuse boosts rate (1000x) iﬁ il [k

+ Densification enhances coverage

+ Reduced cost and energy efficient

- Backhauling

Internet Video
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Wireless Voice

- Increased interference

o 2010 2015 2020
- Increased overhead (small cell coordination) Year

[ Reusable content overloads backhaul (now 60% of mobile data traffic, 500X in 10yrs) ]

V. Chandrasekhar, J. G. Andrews, and A. Gatherer, “Femtocell networks: A survey,”
IEEE Communication Magazine, vol. 46, no. 9, pp. 59-67, September 2008.



Proactive caching for small cells

O Small cells with storage and cashing
= Store (coded) popular reusable content; also dynamically via mobile devices
» Reduce peak-to-average load ratio; and shift backhaul load via caching

L Pre-allocation of resources

= Serve predictable peak-hour demand during off-peak times

d Learn and track what, when, and where to cache -~ """~

o
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= Model and learn content popularities

v vector of probabilities [p]; = 1/(af”)

v' popularity matrix — both static models ((

. . . IS \ ()
v learn via multi-arm bandit [Belasco etal'14] - \ — W4 (i

= Account for space-time dynamic changes?

O Leverage inter-dependent social networks?

G. Paschos, E. Bastug, I. Land, G. Caire and M. Debbah, “Wireless caching: Technical misconceptions
and business barriers,” IEEE Communications Magazine, vol. 54, no. 8, pp. 16-22, August 2016.



Space-time dynamic popularity model

Network
operator
(cloud)
Files over /
backhaul { p, (1)
> [ 1 . D= N
TN, (t+1) ! Caching Control | | Small cell
Nl i Unit (CCU) | (fog)
=1 ' N A USSR
Serve files fﬂ P (f)
to edge l\\
= Storage unit cashing M (out of total F) files " Reque“ﬁ of users
@,.@ (edge)
= Local and global profiles per slot t
~ __ local requests for f . ~ __ global requests for f
[pL(tﬂf ~all local requests [p(J (t)]f _

all global requests

= Action vector Fx1: [a(t)]r =1 ,iffile f is cashed; O otherwise

= State vector 3Fx1: s'(t):= [pr(t),pa(t), a(t)]

= Policy 7(-) : a(t+1) =mn(s(t))

[Goal: Given {s(’r)}f’r:o and observed costs, optimize policy interactively]

A. Sadeghi, F. Sheikholeslami, and G. B. Giannakis, “Optimal Dynamic Proactive Caching
via Reinforcement Learning,” Proc. of Globecom Conference, Singapore, Dec. 4-8, 2017.



Reinforcement learning approach b (10, (1) B0y (6)

< . b-;-d : h-:
0 Cost is a weighted combination of three factors a(il) aT(f)
= Cost of extra files to cache at slot t c1 (a(t),alt — 1)) := \MaT (£)(1 —a(t — 1))
= Cost of locally requested non-cached files co (s(t)) == Xa(1 —a(t)) "pr(t)
= Cost of globally popular non-cashed files c3 (s(t)) == A3(1 — a(t))TpG(t)
C(s(t—1),a(t)|pc(t),pL(t)) == ci(alt),alt — 1)) + a2 (s(t)) + c3(s(?))
O Expected cost (discounted by O<y<1) value function
4 T 7
V™ (s(tg)) :== lim E| Y At lC(s(t—1),7(s(t — 1)) |pa(t), pL(t))
T— o0 t=to+1
T (sg) = argmin V7 (sg), Vs
L (so) & o (s0), Vso Y

O Possible solvers
v’ Adaptive dynamic programming v/ SARSA v’ Q-learning

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, 0
Cambridge, MA, USA: MIT Press, 1998.



Q-learning

QO Markov decision process model s' (t) := [pr(t). pa(t),a(t)]
v Transition per action [P, =Pr(S(t+1)=¢5|S(t) =s,A(t) = a)
v (state, action) value function Q™(s.a) = E[C(s,alpr.pa)] +7 > o [P VT (s')
« Initialize s(0). Q(s.a) = 0
S1. Action (exploration or exploitation) R
argmin @ (s(t —1),a) w.p. 1—¢
a(t) = a
acA w.p. €
S2. Update pL.(t), pc(t) based on user requests

S3.Cost  C'(s(t —1),a(t)| pa(t), pL(t))
S4. Q-table update ) )
Qi (s(t—1).a(t)) = (1= 51)Q—1 (s(t —1),a(t)) + 5

x [o (s(t = 1).a(t) | pa (), pL(t)) +ymin Qs (s(),a)]

O Prohibitive complexity motivates Q-function approximation alternatives

'Theorem. For any €; > 0,if )7, 3, =ocand >.,°, 37 < oc, thenm — 7" w.p.1

10



Preliminary

Similarly for pc [¢]
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A. Sadeghi, F. Sheikholeslami, and G. B. Giannakis, “Optimal Dynamic Proactive Caching "

via Reinforcement Learning,” Proc. of Globecom Conference, Singapore, Dec. 4-8, 2017.



Future research and stakeholder analysis

O Low-complexity tracking of dynamic content popularities
O Cooperative cashing across neighboring small cells
O Cross-layer design of coded cashing

O Privacy-preserving, secure, space-time variable caching
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Thank you!

G. Paschos, E. Bastug, I. Land, G. Caire and M. Debbah, “Wireless caching: Technical misconceptions
and business barriers,” IEEE Communications Magazine, vol. 54, no. 8, pp. 16-22, August 2016.




Reinforcement learning

L Agent learns how to optimize objective by interacting with an unknown environment

W Objective: Find optimal policy maximizing expected cumulative reward

fe v
Sgv 9N

N Lot i
e < 2 ,'%F’

"'J Agent |
O Agent-environment interactions entail state| | rowara )
action
»  States (S); actions (A); and rewards (R) S| (R A,

RI+] (
; s.. | Environment ]4—

= Transition matrix per action a: [P%],s = Pr(S;11 = §'|S; = s, A; = a)

O Model: Markov decision process (MDP) (S, A, R, P,~)

O MDP value functions for policy 7(-) , which maps state to action a[t + 1] = 7 (s[t])

>0
= (State) value function VT(s) =E[Y Y R[,]S =] v € [0.1]
7=0

ol
= (State,action) value function Q" (s.a) =E[R{ | + > AR, |S = s. 4, =d
7=1

R. S. Sutton, and A. G. Barto, Reinforcement Learning: An Introduction. MIT Press, Cambridge, MA, 2014. 13



‘ RL example: Maze runner robot

Objective: Exit the maze ASAP

State: agent’s coordinates (square)

E Actions: move N, E, S, W
15 12

Start | Reward: -1 per step taken to exit

-17 -6 - L. .
H = Here s, a, and R are deterministic

CoalofRL Arrows: optimal policy, 7*(s), Vs

Goal — Value function: V7™ (s) = —15

—— Q-function: Q™ (s.a =S) = —17
Q Policy 7* is optimal iff for Vr :

m*(s) = argmax Q™ (s, a)
a

[ VT(s)>V™(s); VseS 1
V™ (s) = max Q" (s,a)

14
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