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Evolution of cellular networks
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~1946 ~2009 ~2020~1990~1980 ~2000

USA 
Mobile telephone 

(Bell labs) 

 New generation every 10 years: Higher rates, but not backward compatible 

Japan
Oper. freq. 800 MHz

Finland
TDMA, CDMA

SMS, MMS, picture
High penetration of cell phones

Goodbye 2G by 2018
Oper. freq. 850/900/1800 MHz

BW: 25 MHz

Japan
3G prompted by basic research

MIMO, STBC, HARQ,OFDM 
Mobile Internet via smart phones 

Video conference, video on demand
L/1900ocation based services – GPS

Oper. freq. 800/850/900/1700/1900/2100 MHz
BW: 60 MHz

Norway
HD mobile TV, gaming, amended mobile web access

OFDMA, SC-FDMA, channel dependent scheduling, link 
adaptation, mobile IP, MU-MIMO, spatial multiplexing

Oper. freq.  700/800/850/900/1700/1800/1900/
2100/2300/2500/2600 MHz

BW:100MHz
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Technology directions for 5G

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta and P. Popovski, “Five disruptive technology 
directions for 5G,” IEEE Communication Magazine, vol. 52, no. 2, pp. 74-80, February 2014.

2. Millimeter wave (mmWave)

3. Massive MIMO

5. Seamless machine-to-machine (M2M), and IoT communications

4. Smart network,  e.g., adaptive caching in small cells (fog)

1. Device-centric designs (edge)

Subject of today’s talk
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Challenges for 5G

 Higher volume, lower energy consumption

 Massive number of devices (M2M, IoT)

 Service deployment time

5G desiderata over 4G

 Evolving user content profiles 

 50% of traffic volume in 4G 
 500-fold increase in 5G

 Social networking
 15% of traffic volume in 4G 

 Music, games …

 Mobile video streaming 

Heterogeneous (small cell) networks (fog) 



Heterogeneous small-cell networks
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 Traditional cells

 Expensive (over $100K+OpEx)
 40W Tx power
 Fast dedicated backhaul

 Pico-cells

 Femto-cells

 Medium to long-range (1-10 km)
 High-gain antenna 
 Crucial for coverage and mobility support

Heterogeneous networks (HetNets) entail all three types

J. G. Andrews, H. Claussen, M. Dohler, S. Rangan and M. C. Reed, “Femtocells: Past, Present, and 
Future,” IEEE Jour. on Selected Areas in Communications, vol. 30, no. 3, pp. 497-508, April 2012.

 Short-range (~100m)
 Small, easy deployment
 Targeting “hotspots” or dense areas

 WiFi range (~10m)
 Inter-cell coordination minimum overhead
 Licensed spectrum

 100$+small OpEX
 100-200mW Tx power
 Backhaul (IP, e.g. DSL, coax)

 Low-cost ($5-40K + small OpEx)
 1-2W Tx power
 Cheap backhaul
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Pros and cons of HetNets

+ Densification enhances coverage

+ Spatial reuse boosts rate (1000x) 

+ Reduced cost and energy efficient 

V. Chandrasekhar, J. G. Andrews, and A. Gatherer, “Femtocell networks: A survey,” 
IEEE Communication Magazine, vol. 46, no. 9, pp. 59–67, September 2008.

- Backhauling 
 Fiber to pico-cells not viable
 Cheap backhauling lowers traffic 

- Increased interference

- Increased overhead (small cell coordination)  

Reusable content overloads backhaul (now 60% of mobile data traffic, 500X in 10yrs)
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 Pre-allocation of resources
 Serve predictable peak-hour demand during off-peak times

G. Paschos, E. Bastug, I. Land, G. Caire and M. Debbah, “Wireless caching: Technical misconceptions 
and business barriers,” IEEE Communications Magazine, vol. 54, no. 8, pp. 16-22, August 2016.

Proactive caching for small cells  

 Small cells with storage and cashing   
 Store (coded) popular reusable content; also dynamically via mobile devices
 Reduce peak-to-average load ratio; and shift backhaul load via caching 

 Leverage inter-dependent social networks?   

 Learn and track what, when, and where to cache  

 Model and learn content popularities

 vector of probabilities 

 popularity matrix – both static models 

 Account for space-time dynamic changes? 

 learn via multi-arm bandit [Belasco etal’14] 



 Local and global profiles per slot t
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 Action vector Fx1:                             , if file f is cashed; 0 otherwise

 State vector 3Fx1:

 Storage unit cashing M (out of total F) files

 Policy          :   

Space-time dynamic popularity model

A. Sadeghi, F. Sheikholeslami, and G. B. Giannakis, “Optimal Dynamic Proactive Caching 
via Reinforcement Learning,” Proc. of Globecom Conference, Singapore, Dec. 4-8, 2017.

Goal: Given and observed costs, optimize policy interactively 
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Reinforcement learning approach

 Cost is a weighted combination of three factors

 Cost of extra files to cache at slot t

 Cost of locally requested non-cached files

 Cost of globally popular non-cashed files

 Possible solvers

 Expected cost (discounted by 0<γ<1) value function 

 Adaptive dynamic programming    Q-learning SARSA

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
Cambridge, MA, USA: MIT Press, 1998.
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Q-learning

Theorem. For any             , if                         and                         , then                w.p.1    

 Prohibitive complexity motivates Q-function approximation alternatives  

 Markov decision process model

 Transition per action

 (state, action) value function 

 Initialize 

S1. Action (exploration or exploitation)

S2. Update                        based on user requests

S3. Cost

S4. Q-table update
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Preliminary tests

 Two-state Markov chain for modeling  

 State transition probabilities 

 A two-step structure for

 Similarly for           

 and   

 F=10 files and M=2 storage units

A. Sadeghi, F. Sheikholeslami, and G. B. Giannakis, “Optimal Dynamic Proactive Caching 
via Reinforcement Learning,” Proc. of Globecom Conference, Singapore, Dec. 4-8, 2017.
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Future research and stakeholder analysis

 Cooperative cashing across neighboring small cells 

 Low-complexity tracking of dynamic content popularities

 Privacy-preserving, secure, space-time variable caching

 Cross-layer design of coded cashing

Thank you!
G. Paschos, E. Bastug, I. Land, G. Caire and M. Debbah, “Wireless caching: Technical misconceptions 
and business barriers,” IEEE Communications Magazine, vol. 54, no. 8, pp. 16-22, August 2016.
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Reinforcement learning

 Agent learns how to optimize objective by interacting with an unknown environment

R. S. Sutton, and A. G. Barto, Reinforcement Learning: An Introduction. MIT Press, Cambridge, MA, 2014.

 Objective: Find optimal policy maximizing expected cumulative reward

 Model: Markov decision process (MDP) 

 Transition matrix per action a:

 MDP value functions for policy , which maps state to action

 (State) value function 

 (State,action) value function

 States (S); actions (A); and rewards (R)
 Agent-environment interactions entail
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RL example: Maze runner robot

Actions: move N, E, S, W

State: agent’s coordinates (square)

Arrows: optimal policy, 

Value function:

Q-function:

Goal of RL

Reward: -1 per step taken to exit 

 Policy      is optimal iff for         : 

 Here s, a, and R are deterministic

Objective: Exit the maze ASAP
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