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CardioNet: Cardiac Monitoring Service —
Enabled by QUALCOMM'’s Wireless Network Management Services
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e Ul for “Everything”

— Devices with Computing Capabilities & Interfaces

e Network Communication

— Devices Connected to Home Network

e Media: Physical to Digital

— MP3, Netflix, Kindle eBooks, Flickr Photos
e Smart Phones

— Universal Controller in a Smart Home

e Smart Meters & Grids

— Demand/Response System for “Power Grid”

e Wireless Medical Devices

— Portable & Wireless for Real-Time Monitoring
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Net-CPS: Wireless Sensor @/
Networks Everywhere

Wireless Sensor Networks (WSN) for

infrastructure monitoring

m Environmental systems

m Structural health

m Construction projects

m Energy usage
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Generation Transmission Distribution Utilization

Residential/Commercial

\

i

Conventional: Coal, Nuclear,

Qil / Gas, Hydro Smart Grid * Low-cost “embedded”

; | energy sensors
= |

+ Communications

Rnwable: Solar, Wind

+ ACEEE estimates +2x energy savings

» Able to measure and manage carbon T R

footprint per product line equipment energy + Integrated control &
energy mgmt.
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Collaborative Autonomy 1o

« Component-based Architectures

« Communication vs Performance Tradeoffs
* Net-HCPS ... human behavior

* Distributed asynchronous

 Fundamental limits
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 CPS: Technological systems where physical
and cyber components are tightly integrated

 Examples: smart phones, smart sensors, smart
homes, smart cars, smart power grids, smart
manufacturing, smart transportation systems, human
robotic teams, ...

 Most of modern CPS are actually networked:
via the Internet or the cloud, or via special
logical or physical networks

 Examples: modern factories, Industrie 4.0, modern
enterprises, heterogeneous wireless networks, sensor
networks, social networks over the Internet, Industrial
Internet (I1C), the Internet of Things (loT), ...
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With networks new fundamental challenges
emerge: network semantics and characteristics

Fundamental challenges on two fronts:

— (a) on the interface between cyber and physical
components and their joint design and performance;

— (b) on the implications of the networked interfaces
and the collaborative aspects of these systems and
their design and performance.

Networked Cyber-Physical Systems (Net-CPS)

Additional challenge: incorporation of humans
In Net-HCPS, as system components from start

11



S loT — Challenges and
ystems =
Opportunities

Research

loT opens up opportunities across multiple verticals
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Relation to loT LS

Evolution to 5G Networks

High Speed Broadband
Gigabit Data
High Band Spectrum

High Performance Networks

Low Latency
High Availability

Virtualized Infrastructure
Software-Defined Networks
Network Function Virtualization (NFV)

Internet of Things

+ Billions of connected
devices

Network Slicing

Customized Services

13
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Characteristics A

Massive growth of loT

loT Market Size

2025-1DC

$7.1T

loT Market Growth

2025-1DC

28.1%

CAGR

Connected Devices
2025

50B

loT Data Growth

2015-> 2025

49x

G

Capacity Latency
1000x more traffic 1 mllisecond
10-100x more devices

Data rates Coverage
10 Ghit/s @peak 100 Mbit/s wherever

Bandwidth & latency demands

14
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* Multiple interacting coevolving
multigraphs — three challenges

 Graph Topology Matters
 Networks and Collaboration —

Constrained Coalitional Games
* 10T and 5G — the enablers

« SDWN and NFV — SD Architecture for
Net-CPS and implications for Net-HCPS

e Conclusions
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« Multiple Interacting Graphs

« Value directed graphs with
weighted nodes

Agents network

=X TS
i W

Nodes: agents, individuals, groups,
organizations

Directed graphs

Links: ties, relationships

Weights on links : value (strength,
significance) of tie

Weights on nodes : importance of
node (agent)

Information {f
network.--~

Communication
network ]

* Real-life problems: Dynamic,

ti . . Networked System
|me_vary|ng _grap S o architecture & operation
relations, weights, policies
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 Multiple interacting coevolving multigraphs involved
— Collaboration multigraph: who collaborates with whom and when.
— Communication multigraph: who communicates with whom and when

« Effects of connectivity topologies:
Find graph topologies with favorable tradeoff between
performance improvement (benefit) of collaborative behaviors

vs cost of collaboration
— Small word graphs achieve such tradeoff
— Two level algorithm to provide efficient communication

 Human group behavior and cognition need different
probability models — the classical Kolmogorov model is not

correct
— Probability models over logics (independence friendly logic) and timed
structures (constrained event algebras)
— Logic of projections in Hilbert spaces — not the Boolean of subsets

18
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Distributed algorithms are essential

— Agents communicate with neighbors, share/process information
— Agents perform local actions

— Emergence of global behaviors

- Effectiveness of distributed algorithms
— The speed of convergence
— Robustness to agent/connection failures
— Energy/ communication efficiency

* Design problem:
Find graph topologies with favorable tradeoff between performance

improvement (benefit) vs cost of collaboration
« Example: Small Word graphs in consensus problems

An Example problem of the Interaction between the Control
Graph and the Communication Graph

19
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« First defined by Bassalygo and Pinsker -- 1973

« Fast synchronization of a network of oscillators

* Network where any node is “nearby” any other

« Fast ‘diffusion’ of information in a network

« Fast convergence of consensus

« Decide connectivity with smallest memory

« Random walks converge rapidly

« [Easy to construct, even in a distributed way (ZigZag graph product)

 Graph G, Cheeger constant h(G)

— All partitions of G to S and S°¢,
h(G)=min (#edges connecting S and S¢ ) / (#nodes in smallest of S and S°¢)

 (k,N,e)expander : h(G)>c¢; sparse but locally well
connected (1-SLEM(G) increases as h(G)?)

20
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Example: Maximizing Power Production of a Wind Farm
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Schematic representation of a wind farm
Horns Rev 1. Photographer Christian Steiness depicting individual turbine wake regions.

» Aerodynamic interaction between different turbines is not well understood.
* Need on-line decentralized optimization algorithms to maximize total power
production.

Assign individual utility
u; (t) = power produced by turbine i at time t
such that maximizing Y;; u;(t) leads to desirable behavior.
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Example: Formation Control of Robotic Swarms
50 . - 50
awf, 7o L wf
o oS Sl o Deploy a robotic swarm in unknown environment:
0f . (L SR obstacles, targets etc. have to be discovered.?!
. R I DR
0 50 0 50
2 2 . .
50 50 - * The swarm must form a prescribed geometric
. ‘0 formation.
30 N
20 20 °°,°°Em'
" oL » Robots have limited sensing and communication
° 0 0 %0 capabilities.

Simulation results demonstrating
rendezvous and gathering along a linel]

For rendezvous, design individual utility

u;(s;) = =
EATE |{sjES:||si—sj||<r}|

such that minimizing };; u;(t) leads to desirable behavior.

— a dist,(s;, obstacle),
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 The nodes gain from collaborating
« But collaboration has costs (e.g. communications)
« Trade-off: gain from collaboration vs cost of
collaboration
Vector metrics involved typically
‘ Constrained Coalitional Games

o« Example 1: Network Formation -- Effects on Topology
« Example 2: Collaborative robotics, communications
Example 3: Web-based social networks and services
o« Example 4: Groups of cancer tumor or virus cells

23
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Formation TS
TTTT T T Two linked dynamics
: ® Trust propagation and Game evolution
| it +1) = fr(ait),vlt), (), ti; (1))
| tin(t) = g'(tij(t),v(t)) Yke N
I zi(t) = h*(7i(t), 75 (t))
: vij(t) = p*(; (%), t5i(t))
: Nod Strategies " .
. Nodei i Neighboring Nodes
: Inference
| Stability of
| Trust Values _
| by o ENG dynamic
I An example of constrained coalition
| coalitional games Nash equilibrium
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o Theorem: vieN andx =» J; » there exists 7,, such that
for a reestabllshlng perlod r> T, (Baras-Jiang 05, 09, 10)
— terated game converges to Nash equilibrium;
— In the Nash equilibrium, all nodes cooperate with all their neighbors.

e Compare games with (without) trust mechanism, strategy update:
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« Solve the problem via detecting adversaries in networks of low
connectivity.

 We integrate a trust evaluation mechanism into our consensus
algorithm, and propose a two-layer hierarchical framework.
— Trust is established via headers (aka trusted nodes)

— The top layer is a super-step running a vectorized consensus
algorithm

— The bottom layer is a sub-step executing our parallel vectorized
voting scheme.

— Information is exchanged between the two layers — they collaborate

 We demonstrate via examples solvable by our approach but not
otherwise

« We also derive an upper bound on the number of adversaries
that our algorithm can resist in each super-step

26
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Adversary outputs constant message. Figure on the left has no
trust propagation. Figure on the right has trust propagation.
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NFVI + VIM: Foundations of NFV

Resource Management for NFV Applications

Virtualized Network Functions (VNFs)

VNF VNF VNF VNF VNF
* NFV Infrastructure (NFVI) — The physical
resources (compute, storage, network) and the
NFV Infrastructure (NFVI) . virtual instantiations that make up the
—_ e e Management in'frastr.uctu re.
Phababuar Boiche st Network i * Virtualized Infrastructure Manager (VIM) - The
Orchestration VIM manages the NFVI and the serves as a
Virtualization Layer conduit for control-path interaction between
VNFs and NFVI.
Compute Storage Network
Hardware Resources

HIGH LEVEL NFV FRAMEWORK

28
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VIM + NFVI

Virtualized Network Functions

Virtualized
Infrastructure
VNF VNF VNF VNF Manager (VIM)
‘I- Vn-Nf
Software Defined
Nf-Vi Networking
NFV Infrastructure (NFVI) —  (SDN) Controller

VIM’s role in resource management is more closely tied with the NFVI
infrastructure. Similarly SDN Controlleris key to resource management of the
networking layer (virtual or physical)

29
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NFVI — Not a Monolithic Component
Key Sub-Components Play Important Roles

. . . NFV Infrastructure (NFVI)
Strong virtualization
S S et SR
. Storage
properties — hardware
compatibility, 1/O
performance, robust

and mature virtual

capabilities are critical Sty st | onmSANaAS
to astrong foundation O == & & @ & 4 ==
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Network Slicing — 5G Networks

A single network to serve multiple networks

Low Bandwidth

High Latency

; High Bandwidth
a0 H

@1 Low Latency

VMWARE

Cloud Orchestration | Operations Management

SP Data Center

Mo Mo milrc mil o il
o mim © mwijm © mm O ni

VNF

VNF VNF VNF

vmware® vCloud NFV Infrastructure
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Service Automation -0 -

Service Automation
An NFVI platform to extend innovative service offerings

P Central Data Cente
Virtual Evolved Packet Core

i o m © mim o mm o m
i © mwil o 1IN o Wi _o m

v-PGW ‘ v-SGW | v-PCRF | v-MME |

vmware vCloud NFV Infrastructure

J

Smart Devices

: SP Mobile Ed
.@.‘ Data Centorg‘
Connected
Car
!‘|' 5 Video
vmware vCloud NFV Infrastructure
VMWARE

* VNF On-boarding
» Service Creation

+ Service Deployment

Speed new service delivery

Ease of deployment

Automation at scale

FS |
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Virtual CPE

it

Branch

v VPN
v-FW
v-Router

HEE

m o m

vmware
vCloud NFV

Residential

p-CPE

N O N

VMWARE

Cloud Orchestration | Operations Management

SP Data Center

NFV Multi-VNF Ecosystem

[=] [=] o] [ wePw wNAT |[[wSBC |[ viDS |
[0 W v-Router wWN [wipPBX |[ wSTB |

vimware® vCloud NFV

Internet

IT Data Center

<0

v-VPN
w-FW

v-Router

[ (=] =)

TR

vimware
vCloud NFV

o

Public Cloud
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SD-WAN

m
Branch

v-8D-WAN
Edge

(=] (]

E o il

vmware
vCloud NFV

@

4GATE

VMWARE

Cloud Orchestration | Operations Management

Private Network

Public Cloud

BB

@:_

SP Data Center
NFV Multi-VNF Ecosystem

[e~] ] (=]
[ ||

vimware' vCloud NFV

v-SD-WAN
Controller

v-SD-WAN
Edge

IT Data
Center

Public Cloud
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" Network as a Service (NaaS)? B

¥l Nuage Networks
LW Virtualized Services Platform (VSP)

Connecting USERS with e
APPLICATIONS e

Single Policy based Network Automation
Platform from the DC to the Branch

Data Center Feature Set (VCS)

Ox
o)

Virtualized Services Platform (VSP)

Virtualized Cloud . Virtualized Services
Services (VCS) utua Netwsoﬂc Assurance Platform
ervices (VNS) (VSAP)
Data Center Connecting & Serving Operational Tools Micro-segmentations & Analytics
(Private Cloud) Disparate Locations (Monitoring / Correlation) Prevent, Detect & Respond

(S_.D-WAN)

f;f?“‘?ﬁx | -

BT

Ericsson
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Final Picture : Datacenter to Cloud

n cloudstack I["l.,/]‘ vmware O

<ubernetes
OPENSHIFT
1

openstack

Service Overlay #3
Service Overlay #1 Service Overlay #2

......................

...............

Data Center-1 Dala Center-2
(Private Cloud)

Ericsson

Total Flexibility

= Any Workload

= Any Hypervisor

= Any Orchestration

= Any Datacenter

= Any Network underlay
= Any Combination

Consistent Automation and Total control
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Virtualizing the Network - @

SD-WAN: Over Private IP and Internet

Virtualized

E‘_{] Services
Directory
Virtualized Y

Services
Controller

!
g

Service Overlay #3

Service Overlay #1 Service Overlay #2

puy——

Data Center HQ Branch Partners Branch

Wide Area Network

Ericsson

Virtualized
‘ 11} e
I =3 [ Controller

Branch

Total Flexibility

=  Any Network

* Any Location

* Any Service ; L2 or L3
= Any Uplink

= Any X86 Platform

= All combinations

Consistent Automation and Total control
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Final Destination: Automated Networks without Borders

I Virtualized
[E Services

Directory

A Virtualized
I 1 I l Services
vl I -3l Controller

Service Overlay #1

Virtualized
Services
Controller

Service Overlay #2
Service Overlay #3

1 e Y

- - - . ad -
..... [t o v —= ‘ 111

........... Lrrramazon
""" s ' webservices
""" :. . ' . X
. . -
.| e T A:“rn
Data Center -2 ta Center ° L 3 3 L0oge C1as3 sy

Wide Area Network Public Cloud

Private Cloud

Ericsson
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Network Slicing s

. Network ng node

' . - Part of slice

Network slicing and application delivery.

Ericsson
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Virtualizations K

Multi-VM Infrastructure
n VN n VN+1 vmware

Re-optimize
openstack openstack kubernetes resource
allocation
HDS Rack Scale Design — Pooled components w/ optical backplane _ O ' .2
\ duditund  eexQax
! 95 el
\ Wdbdian 2008 =
-42 . ' 16_0 : 1500 H 4125 . ;6_73 -
. Cloud analytics
Multi-VIM - northbound plugins
Ericsson Cloud SDN ¥

Ericsson
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Application
plane

Control
plane

Data
plane

r-

Houting

| -

Load balancing e & @

I Northbound APT

”
Controller 1

Fiow ruies Mappmg

generation fanction

Programming interface

Abstraction

[EE——.

Match Counter

In-net processing

Data generation

Power Radio

- ~ .

Controller 2

Sensor node 2

e e

I Southbound APT

v

Controller n

!

Sensor node m

Different functionalities distributed along three planes
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Virtualized Environments

m End-to-end network service
7 B B ' Virtual Network Request
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Cellular core
Copyright © 2016 John S. Baras
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Cellular core

Root Switch | -+

{ ToR Switch ‘ # ToR Switch ‘
—  Server — Server
—  Server —  Server
—  Server —  Server
—  Server —  Server
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VEPC - NF PLACEMENT
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Root Switch | oo Root Switch

{ ToR Switch ‘ # ToR Switch ‘ -------- { ToR Switch

UE Server Server — Server
Server Server | ... —  Server
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Server Server —  Server
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Cellular core

Root Switch | -+

{ ToR Switch ‘ # ToR Switch ‘
—  Server — Server
—  Server —  Server
—  Server —  Server
—  Server —  Server
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APPROACH

- Appro?ch. NF placement solvers:
— Single-stage solver Mixed Integer Linear Programming
— Cellular operator has network-wide view (MILP) formulation

v Optimality

— Main objective: PHI ,
* High time complexity

— Load balancing across the cellular

core Linear Programming (LP)
— DCs close to eNBs are under heavy formulation
load (KLEIN [SOSR 2016]) v Lower time complexity
— Assumptions: * Optimality gap
— Single S-GW and MME per UE
(3GPP)

qf,lul;}
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MOTIVATION

Multi-tenant network virtualization

environments

- Sliceable infrastructures (e.g., Fl
testbeds)

- DCs

Virtual
Slice 1

INNOVATION

CLOUD Service Provider

Security Aware Access

PlanetLab FEDERICA Other Fl testbeds

Future Internet Federated Substrate

f\“’ JT}% The
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INTER-INP VIRTUAL NETWORK EMBEDDING

Challenges:

- Limited knowledge of substrate
topology/resources

- Coordination between tenants tools
and InPs

o-?‘ ) The
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Copyright © 2016 John S. Baras InP3 e OYSICIS
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APPROACH

— Bird's eye view:

User Tools
— Two-stage solver Possble ierarchy T N
1. Request Partitioning of possibly distributed
| brokering services
- Abstract view of substrate resources SO RN UESUOU U :
: E Brokering Services
(multiple InPs) § ;
2. VN Embedding ; | | | |
- InP has network-wide view of own : |
resources | . E Brokering Services\
‘ol : + Coordination/ '
- Establishing Interconnection - greement | )
5 ----#{ | Matching || Placement
— Main objective: —— Partitioning || Pathfining

— Minimize embedding cost

— Load balancing wlggepteReSee
............ Management
Mom'toring
Oé\q" | Tprm The
Slnstltutctor
Copyright © 2016 John S. Baras fmm“ yskgggﬁ



SOFTWARE DEFINED CPS ARCHITECTURE

:" Meta-control . .
' Plane [ Security/Reslience ]
| Orchestration ]
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Summary and ,@

Systems x

Conclusions R

* Net-CPS model — dynamic multiple multigraphs
« Effects of topology on distributed algorithm performance

 Fundamental tradeoff between the benefit from
collaboration and the cost for collaboration — constrained
coalitional games

* |loT and 5G - the enablers
« SDWN and NFV key methods to address heterogeneity

« Extending UMD Model-Based Systems Engineering
(MBSE) Framework to include Humans

« Challenges
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