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Net-CPS: Wireless and Networked 
Embedded Systems
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Future “Smart” Homes 
and Cities

• UI for “Everything”
– Devices with Computing Capabilities & Interfaces

• Network Communication
– Devices Connected to Home Network

• Media: Physical to Digital
– MP3, Netflix, Kindle eBooks, Flickr Photos

• Smart Phones
– Universal Controller in a Smart Home

• Smart Meters & Grids
– Demand/Response System for “Power Grid”

• Wireless Medical Devices
– Portable & Wireless for Real‐Time Monitoring
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Net-CPS: Wireless Sensor 
Networks Everywhere
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Net‐CPS: Smart Grids





At work: Two ASIMOs working 
together in coordination to deliver 
refreshments

Credit: Honda

• Component-based Architectures
• Communication vs Performance Tradeoffs
• Net-HCPS  … human behavior
• Distributed asynchronous
• Fundamental limits

Net-CPS: 
Collaborative Autonomy
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Net-HCPS: Social and Economic 
Networks over the Web

• We are much more “social” than ever before
– Online social networks (SNS) permeate our lives
– Such new Life style gives birth to new markets

• Monetize the value of social network
– Advertising - major source of income for SNS
– Joining fee, donation etc.
– …

• Need to know the common features
of social networks
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• CPS: Technological systems where physical 
and cyber components are tightly integrated

• Examples: smart phones, smart sensors, smart 
homes, smart cars, smart power grids, smart 
manufacturing, smart transportation systems, human 
robotic teams, …

• Most of modern CPS are actually networked: 
via the Internet or the cloud, or via special 
logical or physical networks

• Examples: modern factories, Industrie 4.0, modern 
enterprises, heterogeneous wireless networks, sensor 
networks, social networks over the Internet, Industrial 
Internet (IIC), the Internet of Things (IoT), …

CPS, Net-CPS, Net-HCPS
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• With networks new fundamental challenges 
emerge: network semantics and characteristics 

• Fundamental challenges on two fronts: 
– (a) on the interface between cyber and physical 

components and their joint design and performance; 
– (b) on the implications of the networked interfaces 

and the collaborative aspects of these systems and 
their design and performance.

• Networked Cyber-Physical Systems (Net-CPS)
• Additional challenge: incorporation of humans 

in Net-HCPS, as system components from start

CPS, Net-CPS, Net-HCPS



IoT – Challenges and 
Opportunities
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5G – What is it? 
Relation to IoT
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IoT & 5G: Growth and 
Characteristics
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Some IoT Trends

• Analytics automation
• Augmented reality
• Industrial IoT – Smart Factory 
• Thing Identity and 

Management Services
• IoT Governance and 

Exchange Services
• Edge computing 
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Outline

• Multiple interacting coevolving 
multigraphs – three challenges

• Graph Topology Matters
• Networks and Collaboration –

Constrained Coalitional Games
• IoT and 5G – the enablers
• SDWN and NFV – SD Architecture for 

Net-CPS and implications for Net-HCPS 
• Conclusions
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Multiple Coevolving Multigraphs

• Multiple Interacting Graphs 
– Nodes: agents, individuals, groups, 

organizations
– Directed graphs
– Links: ties, relationships
– Weights on links : value (strength, 

significance) of tie
– Weights on nodes : importance of 

node (agent)
• Value directed graphs with 

weighted nodes
• Real-life problems: Dynamic, 

time varying graphs,  
relations, weights, policies
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Three  Fundamental   
Challenges

• Multiple interacting coevolving multigraphs involved
– Collaboration multigraph: who collaborates with whom and when.
– Communication multigraph: who communicates with whom and when 

• Effects of connectivity topologies: 
Find graph topologies with favorable tradeoff between 
performance improvement (benefit) of collaborative behaviors 
vs cost of collaboration
– Small word graphs achieve such tradeoff
– Two level algorithm to provide efficient communication

• Human group behavior and cognition need different 
probability models – the classical Kolmogorov model is not 
correct
– Probability models over logics (independence friendly logic) and timed 

structures (constrained event algebras)
– Logic of projections in Hilbert spaces – not the Boolean of subsets 



• Distributed algorithms are essential
– Agents communicate with neighbors, share/process information
– Agents perform local actions
– Emergence of global behaviors

• Effectiveness of distributed algorithms
– The speed of convergence
– Robustness to agent/connection failures
– Energy/ communication efficiency

• Design problem:
Find graph topologies with favorable tradeoff between performance 
improvement (benefit) vs cost of collaboration

• Example: Small Word graphs in consensus problems

19

Distributed Algorithms in 
Networked Systems and Topologies

An Example problem of the Interaction between the Control 
Graph and the Communication Graph



Expander Graphs

• First defined by Bassalygo and Pinsker -- 1973
• Fast synchronization of a network of oscillators 
• Network where any node is “nearby” any other 
• Fast ‘diffusion’ of information in a network
• Fast convergence of consensus  
• Decide connectivity with smallest memory 
• Random walks converge rapidly
• Easy to construct, even in a distributed way (ZigZag graph product)

• Graph G,  Cheeger constant h(G)
– All partitions of G to S and Sc , 

h(G)=min (#edges connecting S and Sc ) / (#nodes in smallest of S and Sc )

• (k , N, e) expander : h(G) > e ; sparse but locally well 
connected  (1-SLEM(G) increases as h(G)2)
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Example: Maximizing Power Production of a Wind Farm
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• Aerodynamic interaction between different turbines is not well understood.
• Need on-line decentralized optimization algorithms to maximize total power 

production.

Schematic representation of a wind farm 
depicting individual turbine wake regions.

Assign individual utility
௜ݑ ݐ ൌ power produced by turbine i at time t

such that maximizing ∑ ௜ݑ ௜ݐ leads to desirable behavior.

Interaction Between Control and 
Communication Graphs: Agents 
Learn What is Best for the Team 

Horns Rev 1. Photographer Christian Steiness



Example: Formation Control of Robotic Swarms

22

Simulation results demonstrating
rendezvous and gathering along a line[2]

• Deploy a robotic swarm in unknown environment: 
obstacles, targets etc. have to be discovered.[3]

• The swarm must form a prescribed geometric 
formation.

• Robots have limited sensing and communication 
capabilities.

For rendezvous, design individual utility
௜ݑ ௜ݏ ൌ 	 ଵ

|ሼ௦ೕ∈ௌ: ௦೔ି௦ೕ ழ௥ሽ|
	െ ,௜ݏ௥ሺݐݏ݅݀	ߙ	 ,ሻ݈݁ܿܽݐݏܾ݋

such that minimizing ∑ ௜ݑ ௜ݐ leads to desirable behavior.

Interaction Between Control and 
Communication Graphs



The Fundamental Trade-off

• The nodes gain from collaborating
• But collaboration has costs (e.g. communications)
• Trade-off: gain from collaboration vs cost of  

collaboration
Vector metrics involved typically
Constrained Coalitional Games
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 Example 1: Network Formation  -- Effects on Topology
 Example 2: Collaborative robotics, communications
 Example 3: Web-based social networks and services

● ● ●
 Example 4: Groups of cancer tumor or virus cells



24

Dynamic Coalition 
Formation

Two linked dynamics
• Trust propagation  and  Game evolution

Stability of 
dynamic 
coalition

Nash  equilibrium
An example of constrained 

coalitional games
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Results of Game Evolution
● Theorem:                                    , there exists τ0, such that 

for a reestablishing period τ > τ0  (Baras-Jiang 05, 09, 10) 
– terated game converges to Nash equilibrium;
– In the Nash equilibrium, all nodes cooperate with all their neighbors.

● Compare games with (without) trust mechanism, strategy update:


   and 

i
i i ijj N

i N x J

Percentage of cooperating pairs vs negative links Average payoffs vs negative links



Consensus with Adversaries

• Solve the problem via detecting adversaries in networks of low 
connectivity.

• We integrate a trust evaluation mechanism into our consensus 
algorithm, and propose a two-layer hierarchical framework.
– Trust is established via headers (aka trusted nodes)
– The top layer is a super-step running a vectorized consensus 

algorithm
– The bottom layer is a sub-step executing our parallel vectorized

voting scheme. 
– Information is exchanged between the two layers – they collaborate

• We demonstrate via examples solvable by our approach but not 
otherwise

• We also derive an upper bound on the number of adversaries 
that our algorithm can resist in each super-step
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Simulations

Adversary outputs constant message. Figure on the left has no 
trust propagation. Figure on the right has trust propagation.
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Conquering Heterogeneity --
NFVI & VIM
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NFVI & VIM
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NFVI
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Network Slicing
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VMWARE



Service Automation
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VMWARE



Use Case – Virtual CPE
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VMWARE



Use Case -- SDWAN
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VMWARE



Virtualizing the Network –
Network as a Service (NaaS)?
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Ericsson



Virtualizing the Network
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Ericsson



Virtualizing the Network
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Ericsson



Virtualizing the Network
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Ericsson



Application Delivery –
Network Slicing

39

Ericsson



Supporting Multiple 
Virtualizations
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Ericsson



Basic SDWN Architecture
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Different functionalities distributed along three planes



[FISCHER,2013] Fischer, Andreas, et al. "Virtual network embedding: A survey (2
[ETSI] http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.

Resource Allocation in 
Virtualized Environments

Copyright © 2016 John S. Baras 42
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APPROACH

 Approach:
 Single-stage solver
 Cellular operator has network-wide view

 Main objective:
 Load balancing across the cellular 

core
 DCs close to eNBs are under heavy 

load (KLEIN [SOSR 2016])
 Assumptions:

 Single S-GW and MME per UE 
(3GPP)

NF placement solvers:
Mixed Integer Linear Programming 
(MILP) formulation

 Optimality
 High time complexity

Linear Programming (LP) 
formulation

 Lower time complexity
 Optimality gap

Copyright © 2016 John S. Baras 47



MOTIVATION

Multi-tenant network virtualization 
environments
- Sliceable infrastructures (e.g., FI 

testbeds) 
- DCs

Copyright © 2016 John S. Baras 48



INTER-INP VIRTUAL NETWORK EMBEDDING

Challenges:
- Limited knowledge of substrate 

topology/resources
- Coordination between tenants tools 

and InPs

Copyright © 2016 John S. Baras 49



APPROACH
 Bird’s eye view:

 Two-stage solver
1. Request Partitioning

- Abstract view of substrate resources 
(multiple InPs)

2. VN Embedding
- InP has network-wide view of own 

resources
- Establishing Interconnection

 Main objective:
 Minimize embedding cost
 Load balancing

Copyright © 2016 John S. Baras 50



SOFTWARE DEFINED CPS ARCHITECTURE

Copyright © 2016 John S. Baras 51



Summary and 
Conclusions 

• Net-CPS model – dynamic multiple multigraphs
• Effects of topology on distributed algorithm performance 
• Fundamental tradeoff between the benefit from 

collaboration and the cost for collaboration – constrained 
coalitional games

• IoT and 5G – the enablers
• SDWN and NFV key methods to address heterogeneity
• Extending UMD Model-Based Systems Engineering 

(MBSE) Framework to include Humans 
• Challenges
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